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Abstract

We present experimental results which demonstrate that
some standard reinforcement learning problems can be
solved with very simple methods. Namely, we investigate
how policies that are parameterized as linear functions of
observations are able to solve this problems. As opposed to
recent work which focuses on gradient-descent strategies,
our optimization methods for these policies are based on
stochastic sampling of the parameter space.

1. Introduction
Research in neural networks has seen extended success,

achieving human-level on image classification [8]. With
the addition of reinforcement learning into the framework,
these neural networks have also demonstrated human-level
performance on old video games [17]. Many of recent pa-
pers focus on either playing 2D Atari games [17] or control
for various forms of locomotion [13, 23]. However, many of
these methods focus on proving their results on fairly sim-
ple environments [9], such as controlling a classic inverted
pendulum, a swing-up task for the inverted pendulum, and
the classic Mountain Car environment [18]. The first of
these is known to have an optimal linear controller, while
the latter two present a challenge where the system lacks
the control authority to immediately pursuing the goal, re-
quiring moving opposite the direction of the goal to gain
potential energy and then moving towards the goal.

As interest in reinforcement learning grows, it seems
sensible to ask the question of how hard are these prob-
lems?. Some recent work tackles this question through
brute-force exploration of different model sizes with a given
optimizer [12]. In contrast, our work tries to address this
empirically, by asking can very simple models and methods
solve these problems?

2. Related Work
2.1. "Deep" Methods

Many modern uses of reinforcement learning methods
make use of parametric function approximators. Many

Figure 1. A visual example of the three sample environments from
OpenAI gym [2]. For further details about them see section 3.1.

of these model-free methods can broadly be categorized
into two categories [19]. The first category are those that,
given state (and perhaps additional information), approxi-
mate the value of that state. A classic example would be
Q-learning [27]. The second category is those that given
state directly learn to output the optimal action, such as
the classic REINFORCE method [28]. When full state
can be observed, such as Atari games with screen cap-
ture input, Deep Q-Learning variants offer state-of-the-art
performance [10]. However, more classic control prob-
lems, where state a set of numerical measurements about
the system, policy-gradient methods such as REINFORCE,
DDPG [13] and TRPO [23] tend to perform better across a
wide variety of benchmarks [4].

In this work, we only consider a parametric policy, with-
out explicitly trying to estimate policy gradient. Recent
work has shown that simple linear policies [21] with nat-
ural gradient methods can provide competitive performance
with deep models, while being much easier to train.

2.2. Stochastic sampling

Many policy-gradient methods such as REINFORCE,
have large variance in estimating the optimal policy due to
the the sampling nature of the algorithm. There are many
ways to reduce this variance [20], often by improving base-
lines or by implementing better assumptions about tempo-
ral difference learning. However, these methods have added
complexity for minimal performance improvement [4].

In performing black-box optimization of unknown ob-
jective functions, the No Free Lunch theorems [29] demon-
strate that random search cannot be beat over the space
of all objective functions. There exist empirical results
that demonstrate random sampling to be effective baseline
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for general optimization [6]. Additionally,for performing
hyper-parameter optimization for neural networks [1], ran-
dom search can be difficult to outperform.

One interesting method is to use random sampling of pa-
rameters. If one is careful about the choice of distribution
and updates the distribution parameters with respect to mea-
sured costs (or rewards), there exist multiple methods with
promising theoretical and empirical performance. One in-
teresting method which we re-implement is Policy Explor-
ing Parameter Gradients (PGPE) [25]. Here, parameters for
the policy are sampled from a distribution (such as a mul-
tivariate Gaussian), and the parameters of the distribution
are updated through gradient ascent. This allows one to use
non-differentiable policies as one only computes differen-
tial updates from rewards into distribution parameters. The-
oretical analysis of PGPE has shown it to be a lower vari-
ance estimator than REINFORCE [30]. Additionally, there
are extensions of PGPE to multimodal distributions [24],
which we also re-implement and evaluate against random
restarts.

A recent paper has claimed very effective results by us-
ing random search in place of reinforcement learning [15].
However, in our analysis, we see this a numerical gradient
method as opposed to one which considers optimization via
utilizing a stochastic parameter space. Similar to our work,
they demonstrate a very simple method can also be com-
petitive in solving control problems. They also demonstrate
the value in whitening one’s reward spaces and being care-
ful to weight common and rare experiences correctly. We
will consider applications of these insights to our proposed
methods as future work.

3. Methods

3.1. Environment

For our experiments, we will be using the OpenAI gym
environment designed for reinforcement learning [2]. For
this work, we focus on three of the simple environments,
which are still often used as standard evaluation tasks in re-
search papers [9] and are the basis of reportedly challenging
homework in graduate courses [5]. For a visual example of
these three environments, see figure 1.

The first’s environment, called CartPole, as the goal of
maintaining an upright inverted pendulum using discrete
applications of force to the cart, either a fixed size force
to the left or a fixed size force to the right for every itera-
tion; the initial condition is a random, almost upright con-
figuration. The second environment, called Pendulum, has
the goal of swinging up and controlling an inverted pendu-
lum by applying a continuous valued torque (with a torque
limit) at the base of an arm joint; the initial condition is
a random joint angle for the arm. The third environment,
called MountainCar [18], has the goal of driving a cart over

the mountain on the right by discrete applications of force,
similar to the first environment; the initial condition in this
environment is always in a slightly perturbed starting loca-
tion in the middle basin.

In the Pendulum and MountainCar environments, the
system doesn’t have the control authority to directly accom-
plish the task, and requires going in the opposite direction
of the reward, gaining potential energy, and then solving
the task by going the other direction. MountainCar is gen-
erally more challenging than Pendulum, and is more chal-
lenging for all known methods [4] (see Table 1). We sus-
pect this because Pendulum is able to sample all random
initial conditions (thus not requiring exploration, only sam-
ples), while MountainCar always has an initial condition in
the basin. Additionally, we evaluate on the discrete action
form of MoutainCar, which we found to be more difficult
than the one where the action space consists of continuous
values torques; this is unsurprising as the former has a more
discontinuous objective landscape.

3.2. Formulation

We consider a parametric policy which takes some state
~s, has parameters ~θ and produces an appropriate action.

π(~s) = fθ(~s) (1)

In our case, we will consider a policy that is a linear combi-
nation of some ~x, with an activation funcion g(y).

fθ(s) = g(
∑
i

θixi) (2)

The activation function is designed for each specific envi-
ronment. For example, to handle actions which are binary,
integral and numerical respectively, we use the following:

g(y) = y > 0

g(y) = max(−1,min([x], 1))

g(y) = max(−1,min(y, 1))

(3)

To handle pairwise dependencies in our observation vector
(~s) with a linear a linear classifier, we expand our feature
vector to include a bias term and all pairwise features. Al-
though the below notation is over-complete, we use a mini-
mal representation where ~x is dimension d + d2+d

2 + 1 for
a some s ∈ Rd

xij = si · sj | ∀si∀sj ∈ [s1, s2, ..., sn, 1] (4)

We consider the case where each element in the parameter
vector ~θ is sampled from probability distribution.

θi ∼ P (z) (5)

For example, we consider the uniform distribution of pa-
rameter values. Although one could also consider a normal
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distribution, and the PGPE [25] method uses a normal dis-
tribution with a gradient-updated µ and σ.

P (z) = U(−1, 1)
P (z) = N(0, 1)

P (z) = N(µ, σ)

(6)

3.3. Tested methods

• Uniform Random Sampling (URS) Our primary hy-
pothesis, that random sampling in parameter space
provides adequate solutions. In practice, we sample
each dimension independently from the distribution
P (z) = U(−10, 10)

• PGPE [25] Our implementation of PGPE. We perform
ablation studies on various components of implemen-
tations in section 4.3, including symmetric [25] and
multimodal [24] variants.

• CMA-ES [7] A commonly used baseline in black box
optimization and continuous control. It iterative fits a
multivariate Gaussian distribution to the returned re-
wards. PGPE and CMA-ES have been shown to be
comparable methods [22]. Compared to PGPE, CMA-
ES can handle modeling off-diagonal terms in the σ
matrix, and includes a weighting term where lower
costs get higher weight in the gradient update.

4. Results
4.1. Uniform Random Sampling

To see our statistical results for uniform random sam-
pling, see figure 2. For these experiments, we evalatute how
long does it take URS to find a valid solution, as, over time,
URS will explore all possible configurations. In short, URS
is able to find valid solution for all three environments, in
roughly a distribution that resembles a decaying exponen-
tial.

For inverted pendulum, the environment fails if arm be-
gins to fall or the cart moves too far to the left or right.
However, in most cases, a valid solution is found in a few
hundred trials.

For swing-up, because the environment has random
starting angles, the OpenAI simulation of swing-up often
finds itself in a ”good” random configuration and finds a so-
lution even faster in expectation. Although, not all of these
configurations would work over multiple random restarts of
the simulation. As seen in table 2, a stable solution can
again be found in a few hundred trials.

Lastly, for the MountainCar task, random search often
finds a solution in a few thousand iterations, taking much
longer to find a valid solution. As explained in section 3.1,
the increased challenge in solving MountainCar is due to

Method Trials µ Trials σ Time (s) µ Time (s) σ

DQN 83 10 38.8 21.9
URS 679 539 0.4 0.3
PGPE 400 348 2.1 2.0
CMA-ES 127 95 1.3 1.0

Table 1. Cartpole Results over 10 trials. Comparing Deep Q Net-
works, Uniform Random Sampling and Policy Gradient Parameter
Exploration. URS is the least sample efficient, but has nearly no
overhead. DQN is the most sample efficient but has such large
overhead that it takes an order of magnitude longer. PGPE has
roughly the same overhead as URS but is more sample efficient.

Method Trials µ Trials σ Time (s) µ Time (s) σ

DDPG 70 6 296.2 50.4
URS 320 225 3.4 2.5
PGPE 180 118 1.8 1.1
CMA-ES 1022 1438 10.3 14.5

Table 2. Pendulum Results over 10 trials. Comparing Determin-
istic Deep Policy Gradients, Uniform Random Search, PGPE and
CMA-ES in solving the swing-up task. The task is considered
complete when the method gets a stable upright solution. How-
ever, since the initial conditions are random, sometimes it is very
easy to find a solution. With this criteria, the probabilistic sam-
pling methods perform very well. Ideally we’d test over a larger set
of random initial conditions to conclude that the controller actually
works, which is how results are reported in sections 4.3 and 4.4.

initial condition sampling and the control authority of the
configured environment. This is the same result seen in
other reported benchmarks of reinforcement learning meth-
ods [4].

4.2. Deep learning baselines

We perform an evaluation against deep learning base-
lines in for CartPole and Pendulum environments and re-
port the results in tables 1 and 2. In CartPole (table 1),
the reference Deep Q Network [17] is the most sample ef-
ficient, but takes the longest due to overhead. On the other
hand, random search is the fastest, despite being the least
sample efficient. This is true even on a single-core instance
of random evaluation. In the Pendulum case (table 2), we
see similar results, except we compare against DDPG [13],
which we find has fairly low variance, but orders of magni-
tude longer running time.

4.3. PGPE variants

To validate PGPE’s performance, we report the results
of several ablation studies on the algorithm’s performance.
All of these results are on swing-up inverted Pendulum and,
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Figure 2. Histograms demonstrating the performance of Uniform Random Search on solving three different problems (left-to-right): con-
trolling an inverted pendulum, performing a swing-up and control of an inverted pendulum, and a MountainCar task. More details are in
section 3.1. Success in this case is defined as having a trial which solves the problem within the OpenAI timestep limit (200 iterations)

unlike the above experiments, the algorithm has to work on
5 random configurations to be deemed a success.

4.3.1 Sample number

We experimented with changing the number of samples
given to each PGPE iteration. See table 3 for results, where
we found 15 samples worked best. We also experimented
with adding uniformly randomly sampled datapoints into
optimization but this decreased performance.

Samples Average Runtime (s)

5 25
10 24
15 12
20 76

Table 3. Results of different sampling numbers in PGPE for the
Pendulum task. These are the means over 10 runs.

4.3.2 Baseline design

In many policy gradient methods, advantage models are key
in obtaining good performance. In an advantage model, re-
wards are compared against a baseline expected reward and
this greatly improves convergence speed [19]. While PGPE
has a several ways of establishing baselines [30], we imple-
ment a moving average of the form

bt+1 = (1− α)R+ αbt

Here, α ∈ [0, 1] while R is either the mean or minimum
reward over the observed iteration. We experimented with
different α values See figure 3 for empirical results. With
the current numbers of samples, the results are inconclusive.
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Figure 3. Experimental results of varying α for design of a base-
line. Results are inconclusive with our sample size of 10 trials.

Method Trials Time (seconds)

SymPGPE 4179± 3975 273± 253
PGPE 470± 330 23± 15

Table 4. In contrast to what the published paper claimed, in our
testing, the symmetric variant performed much worse on Pendu-
lum swing-up

4.3.3 Symmetric samples

The original PGPE paper presents a symmetric variant,
which uses twice the number of samples per timestep but
reportedly has converges faster even in real-time. In the
symmetric variant, noise vectors are sampled and then sym-
metrically added and subtracted from the mean, giving an
estimate of numerical gradient. This is similar to the op-
timization method that recent was recently published and
shown to outperform reinforcement learning [15]. We did
not find this to be the case. Instead, the symmetric vari-
ant often struggled to get significant variation, often getting
stuck in the local minima of only trying to swing-up di-
rectly, taking much longer to discover the trick. See figure 4
for results.
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Method Modes Trials Time (seconds)

Standard 1 470± 330 23± 15
Multimode 3 1024± 401 80± 37

5 1451± 1372 97± 83
Random inits 3 792± 557 43± 32

5 770± 289 40± 15

Table 5. We compare the multi-modal variant of PGPE against
simply doing multiple random initialization in parallel. Our base-
line method using multiple random initializations outperforms the
Gaussian Mixture Model proposed in the paper.

4.3.4 Multimodal distributions

Later variants of PGPE [24] implement a Gaussian mixture
model for the distribution sampling parameter instead of
the single Gaussian used in the original paper. We repli-
cate this method and compare it against trying multiple ran-
dom initializations computed in parallel. See figure 5 for
numerical results. We find that using multiple random in-
tializations and updating them in parallel leads to a correct
answer faster than using a Gaussian mixture model. How-
ever, it performs worse than the unimodal variant overall,
but each individual random seed requires less time than in
the unimodal case. Thus, multiple modal PGPE still offers
some promise in other optimization environments.

4.4. Comparison

In table 6 we show results on our challenging situation
where multiple suceed in random settings are required to
pass the task. We can see that CMA and PGPE are com-
parable in both run-time and iteration count, while random
search takes only 4 or 5 times longer.

Method Trials Time (second)

URS 2335± 1568 81± 49
PGPE 470± 330 23± 15
CMA-ES 538± 651 16± 19

Table 6. Results on the challenging environment where multiple
trials of the simulation have to succeed. PGPE and CMA are com-
petitive. Other methods such as MaxLIPO[14] did not converge in
under an hour and results are excluded.

5. Conclusion
Due to its simplicity of implementation and minimal

overhead, random sampling can be very efficient in solving
simple control problems. While it requires an order of mag-
nitude more iterations than more sophisticated methods, it
can sometimes still win in runtime cost, even on a single-
core implementation. In a distributed computing context,

such non-sequential evaluation methods would have even
more value. There are methods for scaling deep reinforce-
ment learning methods to distributed compute settings [16]
but they don’t scale perfectly, and require sophisticated pa-
rameter tuning.

Simple variants of probabilistic sampling in optimiza-
tion, such as PGPE, have been demonstrated to be effective
in robustly solving control problems. Variations in the al-
gorithm have been testing and implemented and presented.

Additionally, there is a large literature on analyzing con-
nections between black box optimization and reinforcement
learning. They provided a useful resource and reference
for the preparation of this project, and contain further in-
sights and methods which we’d like to explore in the future
[3, 11, 19, 26].
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