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Abstract

We demonstrate that pre-trained neural networks con-
tain meta-information that can be used to improve fine-
grained recognition. This is demonstrated via two differ-
ent experiments. Our first set of experiments shows that
style-transfer methods can be used to enhance images, ei-
ther enhancing the salient features of their class or shifting
them to another desired class. Our second set of results
shows that looking at the activations of pre-trained neu-
ral networks can provide information about novel classes.
The first method is a progression towards using good top-5
classification accuracy to provide good top-1 accuracy. The
second method builds towards online classifiers that expand
their class distributions over time.

1. Introduction

Pre-trained neural networks models are currently the
standard baseline model for tasks in computer vision. These
networks contain some properties and features that make
them useful for tasks in general [9]. These models seem to
capture perceptual and semantic properties of images at a
variety of scales, and even transfer these properties to other
images in a believable way [3].

Our overall project goal is to explore about the extent
to which information about the expected state of the world
is contained within pre-trained weights. We’ll tackle this
broad goal from two angles. As shown in Fig 1, the first
is to improve disambiguation between classes by actively
leveraging the features the network expects to see. We ini-
tially tried to use feature inversions, but style transfer was a
more successful approach. The second angle, as shown in
Fig 2 is to use the network to detect when observation vio-
lates expectation, which could indicate data from an unseen
class or an adversary. Both of these methods fit in the gen-
eral theme of exploiting internal properties of pre-trained
neural networks to further improve performance for well-
studied problem of fine-grain classification. Since there are
internal properties, we call the project introspective neural
networks.
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Figure 1. A demonstration of our first method. This utilizes style
transfer [3] between exemplars. The source image is a tiger image
on which a pre-trained classifier gets a correct top-5 result, but the
correct label (tiger) is second (to the label zebra). After taking a
known tiger exemplar picture as a style image, we obtain a result
from style transfer where the same pre-trained network gets the
correct top-1 prediction. Our experiments have shown that style
transfer can be optimized to perform such class transformation ef-
fectively.
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Figure 2. A demonstration of our second method. Initially we
build a classifier over some set of classes (e.g. dog, giraffe, sheep).
We then train a binary classifier between those classes and some
new set (e.g. cat, horse, zebra). Finally, we evaluate on a dataset
that has the original classes (dog, giraffe, sheep) and a different
novel set (e.g. bear, crow, finch). All three steps of the process
(fine-tuning, training a binary classifier, and evaluation) use dif-
ferent instances for all classes. The partitioning of classes used
during training of the novel class detector.
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2. Related Work
2.1. Fine Grained Classification

Neural networks are able to accentuate class details
through inversions [14]. By utilizing this capability of en-
hancing a class’s detail, we’re interested in whether we’re
able to learn more fine grained classification models. One
technical approach is to train a GAN [4] to detect real im-
ages from fake images, enhance/invert neural network fea-
tures to emphasize all top 5 classes, and hope that our
GAN selects which is most plausible as a real image.
Similar ideas and models have been explored for super-
resolution [13], but not for enhancing performance. We
originally attempted to use a GAN but found them difficult
to train and moved onto using style-transfer methods [3],
which have a more visually appealing result. Style-transfer
work has been shown to represent perceptual loss [11], for
making images capture desired perceptual detail.

2.2. Novel Classes

Another interesting area is understanding the statistics
and behavior of pre-trained neural network activations and
weights. For example, can neural network statistics tell us
if we’re seeing data from a new distribution of images?
For this, we follow adversarial perturbation and defense
literature. For example, one can train a classifier based
on global activation statistics, as well as neurons of in-
terest [15]. These statistics can detect adversarial exam-
ples [5], although recent work has found weaknesses in
those statistical approaches [1].

Many works focus on looking at network statistics dur-
ing training time, for example gradient-flow [20] can be
used to weight features during fine-tuning, preferring to
only updates weights which lead to good localization.

3. Methods
3.1. Style transfer for enhancing class details

To the cause of improving top-1 accuracy given top-5 re-
sults, we desire to build a function that can shift an image to
each of the top-5 classes. For our experiments, we build on
style-transfer methods [3]. Style transfer is accomplished
by extracting the activations of several layers of a pre-
trained neural network (in our case, we use SqueezeNet [10]
pre-trained on ImageNet). The Gram matrix of each feature
layer is then formed. The Gram matrix for a layer l, Gl,
is a matrix representing feature correlations, where given a
feature map F, Glij is defined [3] by:

Glij =
∑
k

F likF
l
lk (1)

Given the Gram matrices of a source image and a style
image, the least squares loss between them is minimized
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Figure 3. A visual result of our original style-transfer method (bot-
tom right), and the two optimized variants discussed in section 3.1.
All three images on the right are generated by transferring the gi-
raffe image’s style to the bear image, only the style transfer hyper-
parameters θ were obtained by tuning for different results.

by backpropagating into the image domain of the source
image. In our case, we use the Adam optimizer [12]. Ad-
ditionally, we include a content loss term (distillation of a
given feature layer [8]) and a TV regularization term (to ob-
tain a smooth image [19]) to obtain sensible images.

In this work, we simply consider using the Gram matrix
of an exemplar image of the desired class, although as dis-
cussed in section 5, this can then be augmented to handle
distributions of Gram matrix statistics.

3.1.1 Style transfer evaluation

For our dataset, we use a subset of the ImageNet validation
set [2]. Our method first performs classification on a batch
of 5 random images from 5 random classes. We record the
ordinal ranking (e.g 1st, 2nd, 80th, etc.) of the correct class
for each image, as reported by SqueezeNet 1.1 [10] as pre-
trained by PyTorch [17]. These results don’t involve any
style transfer and can be seen in table 4.1 as Ordinal Rank.

Ordinal rankings are a robust statistic and are used to pri-
oritize a higher score for the correct class, without forcing
the network to abandon its sense of uncertainty (as a tradi-
tional softmax cross-entropy loss does). Additionally, this
metric is fairly smooth and more amendable to black-box
optimization than a zero-one loss.

In order to test our style transfer results, we evaluate two
forms of style transfer. In intra-class, we pick a style refer-
ence from the same class as the original image. In inter-
class, we pick a style reference (Istyle) from a different
class than the original image (Isrc). For both cases, we re-
port the ordinal rank of the style reference’s class (Cstyle).
To improve performance, we model style transfer as a func-
tion that accepts two images and returns a new image (Inew)
whose performance is evaluated.

Inew = fθ(Isrc, Istyle)
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L =
∑

Loss(Inew, Cstyle)

As our style transfer function has some hyper-parameters
θ (e.g. weights for different layers, TV regularization
strength, learning rate, etc.), and our loss function is non-
differentiable, we use black-box optimization [6, 21] to
tune the hyper-parameters to improve performance for both
tasks. For validation this optimization, we report results on
a different set of 5 random classes than were used for perfor-
mance tuning. These results can be seen as before and after
optimization results on training and test sets in table 4.1.

3.2. Detecting novel classes

To detect unseen classes, we began with the standard Py-
Torch pre-trained ResNet18 [7] architecture. To adapt to the
dataset we wished to use, the Oxford Flowers dataset [16],
a fully connected layer was added to enable classifying the
smaller number (101) of classes. ResNet plus the adaptation
layer were finetuned (see the Experiments section for more
details), and then that network was used as the source of
features for the classifier that gives a final ruling on whether
an image is from a known class. A couple different clas-
sifiers were tried; their architectures are documented in the
Experiments section.

One tricky part of this task was partitioning the data. The
classes used during training of the classifier must include
classes that are not used during finetuning of ResNet, and
the classes used during testing must be a still different, but
overlapping, set. This was accomplished by splitting the
101 classes of Flowers into 3 even sets. The first set was
used for finetuning, the second set was combined with the
first set for training the classifier, and the third set was com-
bined with the first set for testing the classifier. To ensure
we were not training the classifier on any of the same ex-
act images that were used during finetuning, the first set of
classes in the training data was divided into two. To ensure
dataset balance, the second set was also divided into two,
though the other half was simply discarded. For testing, the
entirety of the first set of classes was combined with the
entirety of the third from the validation data.

4. Experiments & Results
4.1. Style transfer across classes

For transferring style across classes, we use Gram matrix
style transfer [3] as detailed in section 3.1. We report the
results of style-transfer that has untuned, intra-class tuned,
and inter-class tuned hyperparmeters (see section 3.1.1).

The qualitative results can be seen in figure 1, while our
quantitative results are reported in table 4.1. In general,
we see that the untuned style transfer method hurts perfor-
mance. This is seen even in the intra-class setting, where
both source and style image are of the same class. Even

Condition Ordinal
Rank

Ordinal
Rank

(Before Opt)

Ordinal
Rank

(After Opt)

Intra-class Train 4.0 53.4 2.6
Intra-class Test 1.9 40.2 1.5
Inter-class Train 272.0 251.2 18.2
Inter-class Test 590.1 459.2 29.8

Table 1. Results of using style-transfer and parameter optimization
to shift images between various classes. The evaluation metric is
described in sec. 3.1 and results are discussed in sec. 4.1.

in this setting, applying untuned style-transfer significantly
hurts performance. However, when we use our optimized
style transfer function, we can see that we’re able to im-
prove performance across the board, whether in the intra-
class or the inter-class setting.

Qualitatively, the intra-class classifier, as seen in fig. 1,
seems to do minimal transfer from the style image. The
tuned weights may simply be using style transfer as an im-
age pre-processing operation, increasing contrast and de-
noising the image. This may improve performance slightly,
but doesn’t actually perform significant style transfer. On
the other handle, the inter-class tuned style transfer func-
tion seems to get better at preserving details while moving
over details of the desired class. In fig. 1, the bear’s details
are preserved, while the background color palate is updated
to match the style image’s. Additionally, giraffe-like tex-
ture is added into the splotchy grass patterns. This perfor-
mance increase is confirmed quantitatively, where the de-
tection of the style image’s class was originally effectively
random (as seen in the original and untuned cases). After
tuning, our inter-class style transfer method pushes the style
image’s class into the top few percent (both on the training
and holdout datasets). This shows the transfer of meaning-
ful class-specific style properties onto images, even when
given only a single random exemplar from the style class.

4.2. New class classification

To analyze how useful the features produced by the var-
ious layers of ResNet are for determining whether a class
is novel (ie not seen during training), we ran two sets of
tests on the Flowers dataset. The first set of tests compared
how important spatial location was to the extracted features.
The second set of tests compared how important finetuning
ResNet was to the performance of the classifier.

4.2.1 Fully Connected Classifier vs Spatial Classifier

For this test, we compared a simple classifier network com-
posed of 3 fully connected layers (”FC classifier”) with
ReLU activation to a convolutional network, which has 2
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Figure 4. The result of extracting features from every layer in ResNet (layer 0 means the image is used directly), then training a classifier
over those features for 50 epochs. In this model the layer adapting the class count to match the Flower datasets [16] was trained alone for
20 epochs, then the full ResNet + adaptation model was trained for 5 epochs. In the top plot the classifier is three fully connected layers
separated by ReLUs. In the bottom plot, there are 2 convolutional layers before the fully-connected layers. The fully-connected classsifier
is able to over-fit the dataset rather quickly, while the convolutional architecture has a smaller gap between training and testing.
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Figure 5. The result of extracting features from each of the last several layers in ResNet, then training a classifier over those features for
50 epochs. In the top model ResNet was not finetuned at all; the only addition was a layer adapting the class count to match the Flower
dataset’s, which was trained alone for 120 epochs. The bottom model is the same, except that the pre-trained ResNet was included in the
last 100 epochs of training, for the purposes of finetuning.
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convolutional layers in addition to the fully connected lay-
ers of the first model (”Conv classifier”). For both of these
classifiers, we used the features extracted from each layer
of the pre-trained ResNet in turn. For both experiments the
adaptation layer was trained for 20 epochs, then ResNet +
the adaptation layer was finetuned for 5 epochs.

The results of this experiment are seen in Figure 4. We
can see that the FC classifier was overall much more suc-
cessful than the Conv classifier during training, though the
testing accuracy is, in both cases, around a somewhat unim-
pressive 0.6 (compared to random which is 0.5). In addi-
tion we can see that extracting the features from layers 6-9
(the last three residual building blocks and the average pool-
ing layer) proved to be more useful for identifying unseen
classes than any of the earlier blocks.

The fact that adding spatial information to the processing
of the features did not improve performance indicates that
the statistics used for differentiating between classes is non-
local in nature.

4.2.2 ResNet without Finetuning vs ResNet with Fine-
tuning

The second set of tests we ran compared how much fine-
tuning ResNet results in layers that are better at disam-
biguating between seen and unseen classes. In the first case
(no finetuning), we trained the fully connected adaptation
layer alone for 120 epochs. In the second case, we trained
the adaptation alone for 20 epochs, then the full network
(ResNet + adaptation) for 100 epochs. Based on the results
of the first set of tests, we opted to use the FC classifier, and
only looked at the last 4 layers.

The results can be seen in Figure 5. Allowing ResNet
to finetune does result in somewhat better testing accuracy,
which is particularly evident for the last two layers (final
residual building block and average pooling). It is un-
surprising that finetuning results in better classification; it
seems logical that ResNet cannot provide information about
what classes have been seen unless it has a chance to see
them. In this sense the test with no finetuning should be the
minimum bar of what we expect to see, since this is sim-
ply the case where ResNet is contributing nothing to class-
uncertainty, and the burden of learning falls entirely on the
FC classifier.

5. Future work
While the above experiments for style transfer used ran-

dom exemplar images from desired classes as style refer-
ences, this clearly has its flaws. Images, even from a par-
ticular class, have dramatic variation in lighting, pose and
environment. As shown in our visual examples, these varia-
tions are often passed into the target image. One nice prop-
erty of Gram matrices is that they can be seen as a covari-

ance matrix of the feature layer activations. Instead of using
an exemplar, we’d like to use a statistical Gram matrix gen-
erated from an entire class, instead of a random instance
of the class. It remains to be seen how this class-specific,
cross-instance Gram matrix should be generated. We’ve
experimented with un-normalized averaging and obtained
poor results.

For our novel class detection, we show we can train a
classifier that reports uncertainty about whether the given
image comes from its training distribution. In future work,
we would want to leverage the knowledge that a class is new
by tightly coupling this pipeline with methods for adding
new classes to an existing classifier. For example, we can
look into expanding iCaRL [18] to operate in a purely on-
line learning scenario.

6. Conclusion
We looked into two ways of leveraging the weights of a

pre-trained network. We first showed that we could enhance
features of an image to make the classifier more certain the
image was of a particular class. Our experiments showed
that we can improve scores for both correct and incorrect
classes. It is still unclear whether this enables us to improve
top-1 accuracy using the top-5 classes. In order to demon-
strate our efficacy for that, it would require that, while both
improve, the true class either improves more or transferring
to an incorrect classes causes confusion due to the hybrid
images.

Our second exploration was to see whether a pre-trained
network would have information about whether an image is
from a class it has seen before. We looked at whether the
various layers of the pre-trained network contained differ-
ing amounts of useful information, and verified that the pre-
trained network does better at distinguishing unseen classes
when it has been finetuned on the seen classes. Currently,
this can serve as a measure of internal network uncertainty,
for whether or not we expect the network to provide a sensi-
ble classification for a given image. Additionally, this prop-
erty of detecting novel classes is important to eventually
building an online classifier that can detect and add new
classes to it’s distribution without supervision.
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