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Abstract

We explore how natural language infer-
ence (NLI) tasks can be augmented with
the use of visual information. Namely, we
replicate and expand existing baselines for
NLI, including recent deep learning meth-
ods. By adding image features to these
models, we explore how the textual and vi-
sual modalities interact. Specifically, we
show that image features can provide a
small boost in classifier performance for
simpler models, but are a subset of infor-
mation provided in the premise statement
and thus do not benefit complex models.
Additionally, we demonstrate a weakness
in the SNLI dataset, showing that textual
entailment is predictable without reference
to the premise statement.

1 Introduction

Given an image, as well as a human-generated
caption (premise statement), we want to predict
whether a second statement (hypothesis statement)
is entailed, neutral, or contradictory with regard to
the premise statement. This task is known as nat-
ural language inference (NLI) or recognizing tex-
tual entailment (RTE). While existing approaches
have focused on tackling the inference task solely
on the given statements, we plan to improve these
results by combining the language features of the
two statements with visual information from an
image.

This task extends the scope of the classical
NLI and requires a combination of both infer-
ence models and visual models. As such, it
combines aspects from two major fields of arti-
ficial intelligence: natural language understand-
ing and computer vision. To this end, we are
working on the Stanford Natural Language Infer-
ence dataset which contains premise and hypothe-

sis statements, where the premise statements orig-
inate from image captions.

Caption A person in a black wetsuit is
surfing a small wave.

Entailment A person is surfing a wave.
Contradiction A woman is trying to sleep on

her bed.
Neutral A person surfing a wave in

Hawaii.

Figure 1: An example of the data given in the
SNLI dataset, with the associated image from the
Flickr30k dataset

2 Related Work

The Stanford Natural Language Inference (SNLI)
Corpus (Bowman et al., 2015) evaluated the per-
formance of several natural language inference
models on their new, larger dataset. They re-
port three major baselines. The first and best-
performing baseline is a linear classifier with both
lexicalized and unlexicalized sentence features.
The second baseline feeds sum-of-GloVe sentence
embeddings (Pennington et al., 2014) into a fully
connected neural network. The third uses an
LSTM to embed both the premise and hypothe-
ses sentences into a low-dimensional vector space
and then feeds these vectors into a three-layer neu-
ral network. SNLI is described in further detail in
section 4.
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On previous NLI datasets, such as RTE (Gi-
ampiccolo et al., 2007) and SICK (Nakov and
Zesch, 2014), high performing approaches usu-
ally drew from a rich set of hand-crafted fea-
tures and used additional resources (Giampiccolo
et al., 2007), (Hickl et al., 2006), (Lai and Hock-
enmaier, 2014). This was necessary to compen-
sate for small training set sizes. These machine
learning based models proved to be the most suc-
cessful methods on these datasets, usually outper-
forming logic inference based approaches (Tatu
and Moldovan, 2005).

The much larger SNLI dataset (Bowman et
al., 2015) now enables complex deep learn-
ing approaches to outperform feature-based sys-
tems. Designed to model many aspects of the
highly complex structure of language, these mod-
els are now applied successfully to inference tasks.
(Bowman et al., 2016) introduces a tree-structured
RNN that is able to capture the hierarchical struc-
ture of natural language without the need for ex-
pensive preprocessing such as parsing, and sup-
ports batched computation. (Liu et al., 2016)
beat the previous encoder-based implementations
by using a bidirectional LSTMN with an atten-
tion mechanism to build the sentence encodings.
Classification was then done over the concatena-
tion, product and difference, achieving near state-
of-the-art performance.

The best-performing models on the SNLI cor-
pus are attention models that are able to refer-
ence the premise statement when inferring on the
hypothesis statement (Rocktäschel et al., 2015)
(Wang and Jiang, 2015). The current state-of-the-
art result on the SNLI corpus was achieved by the
Long-Short-Term Memory Network (LSTMN)
model proposed in (Cheng et al., 2016). It gen-
eralizes the standard LSTM architecture by in-
troducing memory and hidden state tapes that
grow dynamically with each input word and allow
the hypothesis-parsing network to guide attention
over the states of the premise-parsing network in
a process they call deep attention fusion. They
show a significant improvement against the orig-
inal baselines, as shown in table 1.

On the second aspect of the multimodal infer-
ence task, incorporating visual information into
existing inference methods, no work has been
done to the best of our knowledge. However,
since the introduction of Convolutional Neural
Networks (CNNs) for image classification in 2012

(Krizhevsky et al., 2012), their capability to learn
rich image representations has enabled the use of
images in multimodal settings. For instance, a lot
of recent work has addressed generative models
for text descriptions of images, such as (Karpathy
and Fei-Fei, 2015) and (Vinyals et al., 2015). The
former uses a bidirectional Recurrent Neural Net-
work, multiple region proposals, and infers corre-
spondences between sentences and proposals. The
latter is simpler, in that it takes a full image input,
uses a standard classification CNN, and learns a
unidirectional neural network. For more sophis-
ticated tasks, such as Visual Question Answering
(Antol et al., 2015), models with selective atten-
tion have been designed, which allow the language
model to selectively focus on parts of the image
when it is asked to evaluate certain words (Xu et
al., 2015). These are made possible by learning
a fully-differential soft attention model over entire
images.

Figure 2: A comparison of classical natural lan-
guage inference (above) and the multimodal nat-
ural language inference (below) explored in this
paper.

3 Mulimodal Natural Language
Inference

In this paper, we extend the usual Natural Lan-
guage Inference task with visual information.
Originally, given a premise and hypothesis sen-
tence, the task is to decide whether the given
sentences entail, contradict or are neutral to each
other. Multimodal Natural Language Inference, on
the other hand, takes an image-caption pair as the
premise, and then decides whether the hypothe-
sis sentence is an entailment, contradiction or neu-
tral to the premise pair. A visual overview of both
tasks is shown in figure 2.
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4 Data

The Stanford Natural Language Inference (SNLI)
Corpus is the largest NLI dataset to date, with hu-
man generated annotations and enough data to en-
able deep learning models (Bowman et al., 2015).
It comprises 570,152 image, caption and hypoth-
esis triplets, where the caption represents the
premise and the hypothesis sentence is either con-
tradictory, neutral or entailed by the premise. Most
of the captions were crowdsourced in response to
images from the Flickr 30k corpus (Young et al.,
2014), while 4,000 captions were taken from the
VisualGenome dataset (Krishna et al., 2016). The
hypothesis captions were collected in an Amazon
Mechanical Turk setting, where the Turkers were
only shown the caption and were asked to write a
hypothesis statement that is entailed, contradictory
or neutral with respect to the premise statement.
As each image in the dataset is annotated with all
three types of labels, the classes are balanced and
there exists an entailed, neutral and contradictory
statement for every caption. An example datum is
shown in figure 1.

4.1 Image Feature Extraction

To extract rich image features, we use a Convo-
lutional Neural Network (CNN). As demonstrated
in recent literature (Razavian et al., 2014), using
the top layer vector of a neural network trained
for classification can create a compact image rep-
resentation that can easily produce state-of-the-art
results across a wide range of vision problems.

To extract these features, we used Google’s pre-
trained Inception-v3 net (Szegedy et al., 2015).
Its architecture is depicted in figure 4.1. This
network is different that than those used in other
visual-language datasets (Antol et al., 2015), but
is known to perform better for classification; scor-
ing a top-5 accuracy of a stunning 96.54% on the
ImageNet challenge (Deng et al., 2009). We fed
all Flickr30k (Young et al., 2014) images through
the inception network and extracted the activations
before the final 1000 dimensional fully-connected
layer. This yields a 2048-dimensional feature vec-
tor for each of the Flickr30k images. We also
extract 8x8x1280 dimensional features for a soft
attention model and the LSTMN, as described in
sections 5.4 and 5.3. All other sections use the the
2,048 dimensional vectors.

Due to broken URLs, a small number (less
than 1%) of the Flickr30k images are no longer

Figure 3: Architecture of Google’s Inception
Net. The layers we use for feature extraction are
marked in red. 2,048 dimensional features are
used for experiments with off-the-shelf sentence
embeddings such as hand-crafted features and
sum-of-GloVe embeddings. The 8x8x1280 fea-
tures are used for deep-learned encoder-decoder
architectures such as the LSTMN and soft atten-
tion models.

available, and we simply generate random 2048-
dimensional feature vectors or a zero 8x8x1280
feature map for those images.

5 Models

5.1 Feature-Based Model

Similar to the previous approaches on the RTE
(Giampiccolo et al., 2007) and SICK datasets
(Nakov and Zesch, 2014), the SNLI paper (Bow-
man et al., 2015) proposed a simple feature-based
baseline on their presented dataset. It draws its
features from 6 different sets: BLEU scores (Pa-

Classifier/Model Accuracy
Feature Baseline (Bowman et al.,
2015)

78.1%

Neural Network (Bowman et al.,
2015)

75.3%

LSTMN (Cheng et al., 2016) 86.3%
Feature Baseline 71.8%
Feature Baseline + Images 70.8%
Neural Network 73.3%
Neural Network + Images 74.0%
LSTMN 67.0%
LSTMN + Images 73.0%

Table 1: Comparison of our methods against the
published state-of-the-art results
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pineni et al., 2002), length difference between the
sentence pairs, word overlap, uni- and bigram in-
dicators for the hypothesis, and indicator features
for cross-unigrams as well as cross-bigrams be-
tween the premise and hypothesis. They then train
these features with a linear classifier.

We implemented this model with most of the
features mentioned above, with the following dif-
ferences: The overlap is computed only over all
words, not separately over adjectives, adverbs,
nouns and verbs on top of that. Furthermore, be-
fore extracting the features, we do some prepro-
cessing: All stopwords and dots at the end of the
sentence are removed, and words are stemmed to
get a denser feature representation. When classi-
fying over the hypothesis only, features were only
drawn from the unigrams and bigrams of the hy-
pothesis since no premise was given for this task.
Consequently, there were no unlexicalized fea-
tures.

We used NLTK (Loper and Bird, 2002) to stem
our words. Since the original paper doesn’t clarify
its choice of linear classifiers, we tested both an
SVM (Fan et al., 2008) and a Logistic Regression
classifier with python’s sklearn library (Pedregosa
et al., 2011). We found the Logistic Regression
classifier performed better and therefore use it as
our reference baseline. For efficiency reasons, we
trained with only the most common 10,000 lex-
icalized features, plus 7 additional unlexicalized
features.

For the multimodal inference results, we took
the 2048-dimensional vector of activations of the
last fully connected layer of the inception architec-
ture and concatenated it with the natural language
features as described above.

5.2 Sum of GloVe Neural Network Model

This model aims at reproducing the sum-of-GloVe
vectors baseline from the original SNLI paper
(Bowman et al., 2015). Both textual inputs, the
hypothesis and premise, are embedded into a 300
dimensional sentence encoding to create a com-
pact representation for classification by summing
the sentence’s GloVe word vectors (Pennington et
al., 2014). For words lacking a GloVe vector, we
generate a random 300d number and store that. We
tried two other models, ignoring unknown words
and using a universal unknown word token, but we
found the random generation technique was most
useful across all classifier models.

200d tanh layer

3-way softmax classifier

100d premise

200d tanh layer

200d tanh layer

100d hypothesis 100d image

sentence model with 
premise input

sentence model with 
hypothesis input

convolutional neural 
network image model

Figure 4: The neural network classification archi-
tecture: for each sentence embedding model, the
model is run with the two sentences as input, and
those outputs are concatenated with an image fea-
ture vector representation. The sentence models’
outputs are used as the two 100d inputs.

While the original baseline method simply used
the GloVe vectors as an initial seed and then back-
propagated into the embedding, thus enabling the
model to update those vectors, we simply used the
GloVe vectors as-is. We spoke with the authors of
the original paper and were told the improvement
would be marginal and greatly increases train-
ing and model complexity. Additional results re-
ported on SNLI (Kelcey, 2016) show the result
is noisy, and only yields about 1% improvement.
In fact, they report random embeddings outper-
form GloVe embeddings when given enough train-
ing time. Due to limited time and resources, we
worked with the original GloVe vectors as our
word representations.

Before classification, the sentence embeddings
are projected into a 100-dimensional feature
space. The projection weights are shared across
both premise and hypothesis; we experimented
with using separate weights and found slightly
worse performance. Following the SNLI baseline,
these projections are then concatenated and fed
into a 3-layer fully connected neural network with
200 hidden units per layer and TanH activations.
As reported earlier, we additionally tried SVMs,
Random Forests, and other classifiers, but found
the neural network approach to work best.

As shown in figure 4, we extend the model to be
multimodal by taking the 2048-dimensional im-
age feature vectors, as explained in section 4.1.
This feature vector is also projected into a 100-
dimensional space with a fully connected layer
and concatenated with the premise and hypothesis
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projections.

5.3 Long-Short-Term-Memory Network

As a last model, we implemented the state-of-
the-art model on the SNLI dataset, the LSTMN
encoder-decoder architecture with deep attention
fusion described in (Cheng et al., 2016). This
model extends the classic LSTM architecture by
generalizing the memory and hidden states to
memory and hidden state tapes - for every new
word that the LSTM parses, it adds a new en-
try to these two tapes. After each sentence, the
tapes are reset. This allows for an attention mech-
anism over previously read words within a sin-
gle sentence-parsing LSTM. Two such LSTMNs
are implemented to parse the premise and the
hypothesis. The hypothesis-parsing LSTMN is
further equipped with an attention model over
the hidden and memory tapes of the premise-
parsing LSTMN. This architecture, which (Cheng
et al., 2016) title deep attention fusion, allows
the hypothesis-parsing LSTMN to consider the
premise embedding with each and every word it
parses and thus to notice parallels or contradic-
tions. To generate a final prediction, the memory
and hidden state tapes of encoder and decoder are
averaged and concatenated, yielding a single em-
bedding. This embedding is then fed into a three-
layer fully connected network with ReLU activa-
tions and dropout that produces the final predic-
tions. We attempt to reproduce the test perfor-
mance of 86.3% on the SNLI dataset.

For our multimodal experiments, we consider
the image and the premise statement as a multi-
modal representation of world knowledge. Con-
sequently, the hypothesis statement can be imag-
ined as a query into this world representation. We
follow this concept when adding image features
to the LSTMN architecture: First, we use a 1x1
convolution to reduce the number of channels in
the image feature map from 1280 to the number
of hidden units of the LSTMN, which is also the
depth dimension of its hidden and memory tapes.
We then concatenate the projected image with the
hidden and memory tapes of the premise-parsing
LSTMN, extending them by 64 states that repre-
sent 64 locations in the image. This allows the
decoder with deep attention fusion to guide atten-
tion not only over the hidden states of the premise
statement, but also over each location in the image.

5.4 Soft Image Attention

As an intermediary step of the LSTMN with image
features and the sum-of-GloVe-based Neural Net-
work, we implemented an architecture that takes
as input the two sum-of-GloVe embeddings of the
premise and hypothesis statements and uses them
to guide attention over the 8x8x1280 feature map
extracted from one of the last convolutional layers
of the inception architecture. This is motivated by
recent successes in visual question answering (Xu
and Saenko, 2015) and image captioning (Xu et
al., 2015).

Specifically, the sum-of-GloVe embeddings
form the input to a LSTM which implements a soft
attention model as presented in (Bahdanau et al.,
2014). This LSTM then uses the input to calculate
a soft attention map over the image feature map.
This soft attention map is essentially a weight for
each of the 64 spatial features in the image fea-
ture map. The image features are then fused in a
weighted sum. In three hops, the LSTM thus ac-
cumulates information about relevant parts of the
image. The last hidden state of the LSTM is then
fed into a three-layer neural network with ReLU
activations to produce a final prediction.

6 Results

This section describes the results obtained with
the previously introduced models on the original
SNLI task, when classifying over the hypothesis
only, and when adding image features to these two
tasks, respectively.

6.1 SNLI Results

Our implementation of the feature-based linear
classifier from (Bowman et al., 2015) achieved an
accuracy of 76%, very close to the 78.2% pre-
sented in the paper. After limiting the number of
features to 10,000, though, the accuracy dropped
to 71.8%. This adjustment was necessary to allow
efficient computation when adding image features.

The sum-of-GloVe neural network classifier
achieved an accuracy of 73.3% on the original
SNLI task. As with the feature-based classifier,
this model was setup to be quick to train and run
experiments on, as our primary task was to test
the value of multimodal input. As reported in sec-
tion 5.2, we only trained for 10 epochs and did not
include dropout. These results outperformed the
feature-based classifier with a limited number of
features, but did not reach the performance with
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Classifier Inputs Handcrafted Feature
Accuracy

GloVe NN
Accuracy

LSTMN
Accuracy

Hypothesis 62.1% 64.6% -
Hypothesis + Image 59.7% 67.1% -
Hypothesis + Premise 71.8% 73.3% 70.35%
Hypothesis + Image + Premise 70.8% 74.0% 70.35%

Table 2: Results of our multimodal experiments run over a suite of different classifier modals

the full set of features. This parallels the results
from (Bowman et al., 2015), whose feature-based
baseline outperformed the sum-of-GloVe vectors
neural network, as well as the simple LSTM neu-
ral network baselines.

Finally, we tested our implementation of the
LSTMN model (Cheng et al., 2016). Due to lim-
ited time, we were unable to run the number of ex-
periments that would have been necessary to fully
explore the performance of this architecture - we
were confronted with issues of severe overfitting
and thus were forced to add significant dropout,
thus slowing down training. As a result, our re-
sults stay far behind the performance reported in in
(Cheng et al., 2016). Currently, we see a test accu-
racy of 70.4% and a train accuracy of 70%, but we
are confident that given more time and compute
we would be able to reproduce the results reported
in (Cheng et al., 2016), as we saw the network suc-
cessfully overfit the training data.

6.2 Hypothesis-only Results

As part of our exploration of multiple modalities
and the value of different inputs, we ran our classi-
fiers given only the hypothesis sentences, without
either a textual or image premise. Since no cor-
rect inference should be possible when the premise
is missing, the accuracy should mirror a random
guessing, and only get about 33%. Surprisingly,
though, we found that all classifiers perform con-
siderably better, yielding accuracies over 60%. We
explore the impact of these results in section 7.2.
We additionally trained a premise-only baseline,
but since the classes are balanced and input is
identical to multiple labels, we achieved the ex-
pected 33 % training and testing accuracy.

6.3 Multimodal Results

In a next step, we added image features to both
the hypothesis only, and original SNLI tasks to
see whether the results can be improved. Again,
results are shown in table 2.

For the feature-based linear classifier, we found
that adding image features decreases the accuracy
slightly. It seems the linear classifier has trouble
adjusting to high dimensional features from the
CNN classification task. In both the hypothesis-
only and textual premise classifiers, accuracy de-
creased.

The more complex Neural Network-based
GloVe model, on the other hand, is able to ex-
tract valuable information from the image fea-
tures. The image plus hypothesis classifier outper-
forms the hypothesis-only model by several per-
centage points. However, it only provides a minor
increase in the accuracy when added to the model
that includes the premise.

We additionally tested our soft-attention model
described in section 5.4, but saw it only obtain
72.3% on the full multimodal task. This was less
than the much simpler sum-of-GloVe neural net-
work presented in section 5.2. Based on our anal-
ysis in section 7.2, it seems that visual attention
alone is not beneficial. Thus, the results from this
model are included here for reference, but not fur-
ther elaborated upon in the results and analysis.

For our most complex model, the LSTMN with
deep attention fusion, we find that image fea-
tures do not seem to improve performance. This
seems to suggest that complex models such as the
LSTMN are able to extract all relevant informa-
tion from the hypothesis statement and the image
features are thus redundant. However, while we
trained the LSTMN for up to 10 hours on a high-
performance GPU cluster, we did not have enough
time to train these models for several days, which
would have been required to train them up to their
final performance. As a result, their performance
is still not close to the performance of the original
model by (Cheng et al., 2016).
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Model Entail Neutral Contra Total
FT H 65.1% 60.0% 61.2% 61.2%
FT HI 78.9% 44.7% 54.6% 59.7%
FT HP 78.5% 64.2% 71.8% 71.8%
FT HIP 70.9% 69.7% 72.0% 70.8%
NN H 68.1% 65.3% 60.6% 64.6%
NN HI 66.6% 61.4% 72.4% 67.1%
NN HP 77.9% 70.9% 73.8% 73.3%
NN HIP 75.7% 72.1% 74.3% 74.0%

Table 3: (H) = Hypothesis, (P) = Premise, (I) =
Image. (NN) = Neural Network, sum-of-GloVe
model, (FT) = Hand-crafted features, linear clas-
sifier model. Accuracies of the different styles of
classifier per class. The results form this table are
discussed in detail in section 7.2.

7 Analysis

7.1 Performance of different classifiers
We were able to reproduce two major baselines
that were introduced in (Bowman et al., 2015).

For linear classifiers, none of the models we
built was able to combine the sparse, strictly pos-
itive textual features with the dense, continuous
valued image features. In fact, for the hand-tuned
features with an image vector and a linear clas-
sifier, the performance of the model decreases
slightly, as seen in table 2. This is true of both
the hypothesis-only and textual-premise models.

As can be seen in table 3, the accuracies of the
neutral class are always worse than for the other
classes. This is intuitive, as deciding neutrality can
be challenging due to subtle differences between
sentences. Additionally, adding image features
to the hypothesis baseline significantly boosts the
performance of the entailment class, outperform-
ing the hypothesis-only model by over 13%. This
suggests that adding the image features helps the
classifier determine when a sentence was entailed
in an image. However, due to the use of a sim-
ple linear classifier, it considerably hurt the per-
formance on the neutral and contradiction classes.

We found that with a small number of train-
ing epochs, the neural network model that incor-
porates image features outperforms our baseline
model by a small amount (0.8%, comparable to the
2.2% difference reported between using an LSTM
and simply using a sum of GloVe vectors). Our
attempts to train the image-added model further,
with various amounts of regularization, showed ei-
ther no additional performance or drastic overfit-

ting, as the neural network would get training ac-
curacy near 90% while testing accuracy actually
decreased to 70%. This is in contrast to the pub-
lished SNLI baselines, which reported much less
overfitting with a sum-of-words sentence embed-
ding (79% training, 75% testing) (Bowman et al.,
2015).

Furthermore, we implemented the deep atten-
tion fusion model from (Cheng et al., 2016), but
due to limited training time, we were not able
to reproduce its published performance. Like-
wise, our soft-attention model, presented in sec-
tion 5.4, received limited training time and was
unable to meet or exceed the performance of our
simpler top-level image feature vector representa-
tion. These networks were fairly sophisticated and
required a large amount to hyper-parameter tuning
to converge well, and while we got good results,
we ran out of time to fully explore their possibili-
ties.

7.2 Shortcomings of the SNLI dataset

Based on the results in section 6.2, we show that
even without the premise sentence, which intu-
itively would be necessary to do correct inference,
both baseline models are able to perform far bet-
ter than random and even outperform some sim-
ple baselines from (Bowman et al., 2015). This
demonstrates a weakness in the variety of hy-
pothesis statements in the SNLI dataset, as they
are predictable based on their content alone. We
present a numerical breakdown in table 3 and ex-
plore it further in this section.

While new analysis of the SNLI dataset sug-
gests that many of the contradiction examples in
SNLI simply include a negation of the premise
(Bowman, 2016), we actually found that the
hypothesis-only baseline performs well across all
classes (≥ 60% accuracy). In fact, its strongest
performance comes in entailment, for both fea-
ture and neural network baselines. This suggests
possible grammatical bias in the dataset. That is,
when people are asked to write entailed sentences,
they might use active tone or other predictable fea-
tures. Because of this result, it follows that cre-
ating unbiased textual entailment datasets is very
hard, or that natural language has a predictability
when users write entailed sentences. It seems pos-
sible that the annotators in SNLI lacked variety in
tone, or maybe it is possible to detect agreement
in large part due to tone alone.
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Another interesting result from our multimodal
analysis is that the neural network model is able to
use the image vector to detect contradiction with
about the same power as the textual premise vec-
tor. Image vectors allow for a 11.3% increase in
detecting entailment accuracy.

This leads to another interesting observation
from table 3, which is that adding an additional
set of inputs sometimes decreased accuracy. This
is certainly true for the simple linear classifier,
where adding images decreases the overall accu-
racy. However, the neural network classifier also
sees a drop in accuracy when adding additional
data. Adding images to the hypothesis-only model
decreases the quality of Neutral predictions by
4%, while adding images to the full textual modal
leads to a 2% drop in the accuracy of Entailed pre-
dictions. We attribute this degradation in quality
to our short training time (10 epochs), and insuffi-
cient hyper-parameter tuning for network capacity,
learning rate, and regularization as we change the
inputs of our models. Since we kept our configu-
ration constant across all examples, we expect the
configurations to be sub-optimal for certain cases.

7.3 Value of Image features

However, since the image features are high-
dimensional, they contribute millions of additional
parameters to the network and may require addi-
tional training. Since we held our training settings
consistent across all models, there may be an addi-
tional performance boost available by using image
features with more training time or with additional
training data.

Furthermore, it would be possible to fit the CNN
features directly to this task. Currently, the fea-
tures are taken from a classifier that was fit to
the ImageNet challenge. While this challenge is
very broad and models that were pre-trained on it
yielded good results for various other tasks in the
past, it might be beneficial to train a CNN end-
to-end to yield features that were adapted to this
particular task.

Potentially, the 30k image dataset might be too
small to properly train a complex model using both
image and textual features, since image features
alone add an approximate 1M additional parame-
ters. As (Bowman et al., 2015) noted, the SNLI
dataset might even be too small to even fully ex-
haust the means of deep textual models. The com-
plexity of deep multimodal models would proba-

bly require an even larger dataset to fully exhaust
their learning capacity.

8 Conclusion and Next Steps

In this paper, we replicated the models from (Bow-
man et al., 2015) and (Cheng et al., 2016). Fur-
ther, we demonstrated how image features could
be used to augment natural language inference
tasks. The results indicate that for simple mod-
els such as linear classifiers, images worsen accu-
racy, while they allow a small performance boost
for shallow learning models such as Neural Net-
works fed with sum-of-words GloVe. For suffi-
ciently complex models, our results indicate that
image features cannot contribute additional infor-
mation and do not seem to improve classifier per-
formance. Due to time and computational limits,
however, we were unable to train our most so-
phisticated model, the LSTMN with deep atten-
tion fusion, up to its final accuracy, so that there is
a chance that we did not explore the model’s full
capabilities.

Additionally, we demonstrated possible struc-
tural flaws in the SNLI dataset, where hypothe-
ses are predictable without the premise sentences.
One would expect that without knowledge of a
premise statement, a hypotheses-only classifier
should not achieve a higher accuracy than random
guessing would - yet, our hypotheses-only base-
line outperforms random guessing by a factor of
two, and is only about 10% worse than the initial
SNLI baselines. There is interesting future work
in exploring what structure in the hypothesis al-
low the classifier to perform that well. The natural
question is whether recognizing textual entailment
is predictable based on grammatical content alone
and if not, how one can design a Mechanical Turk
task such that these structures are not inhibited.

An interesting direction for future work is the
basic concept of how to join multiple modalities
representing world knowledge. In the case of mul-
timodal NLI, this is captured by the question how
one should join image and textual information to
allow effective querying into the premise. How-
ever, the concept of multiple modalities that repre-
sent common world knowledge could be extended
to many other fields - for instance, an interesting
approach for object localization in images could
be to learn common object relationships (such as
”children standing on skis”) and use these relation-
ships to infer object localization.
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