
Classification of 3D Shapes with Convolutional Neural Networks

Leonid Keselman

Stanford University

leonidk@stanford.edu

Figure 1. A visual example of the data used in this report. On the

left is a mesh from the ShapeNet dataset (from the ’chair’ class),

while the examples on the right are 30 x 30 x 30 voxel grids. Ex-

amples of the ’desk’, ’bench’, ’airplane’ and ’chair’ classes are

provided. Only the surface voxels are visible and the blue color is

for visualization, as the data itself is simply binary.

Abstract

This project explores how to apply convolutional neu-

ral networks to efficiently classify 3D shapes. Using 3D

shapes from the ShapeNet project [1], they are first cen-

tered, rescaled and resampled to occupancy voxel grids of

dimension 30 x 30 x 30. We implement 3D convolutional

neural networks operating directly on these three dimen-

sional volumes, as well as 2D convolutional networks oper-

ating on a learned embedded from the 3D model. Results

from both methods are state-of-the-art compared to exist-

ing, published methods.

1. Introduction

Recently, with the the ImageNet challenge in image clas-

sification [15], many other large scale datasets have been

collected for the purpose of creating competitive, quanti-

tative progress in machine learning research. Specifically,

this project focuses on ShapeNet [1], a recently released

dataset that includes 3D CAD models of forty different ob-

ject categories, dubbed ModelNet40. This paper presents

various designs and tests of convolutional neural networks

to solve this object classification challenge. In this case, we

will present both 2D and 3D convolutional networks, both

trained from scratch and refined on existing datasets.

1.1. Dataset format

In this paper, we will train and test on the ModelNet40

dataset released from the ShapeNet dataset [1, 22]. The

dataset is already split into a test set and a training set. In

my own use, the training set is further split into a training

set and a validation set, and the validation set is used for

hyper-parameter tuning, although the reported results in the

paper are test set accuracies. The authors of the original pa-

per have kept track of published results on this dataset and

their table is replicated in full, with citations as Table 1 on

page 7.

Unlike images, in which there is a single standard repre-

sentation, namely pixel grids of luminosity, shapes have a

wide range of representations, many of them incompatible

in nature [12]. In fact, shapes represent a very different type

of object than an image. While images represent the projec-

tion of a three-dimensional scene (four if you count motion

blur), shapes represent an R2 surface embedded in R3. Tra-

ditionally, shapes are stored as meshes, which are a list of

triangular or quadrilateral components, unordered and with

no connectivity information. This is similar to using vec-

tor shapes to represent 2D content, and has the downside

of providing minimal locality and connectivity information.

A straightforward extension of the pixel model of images

(that is, a quantized representation as a rank-2 tensor) to

shapes is to represent them as a rank-3 tensor, or volume.

While many volume models exist, we chose to use occu-

pancy grids, which are represent the inside of a shape with

ones and all other elements as zero. An alternative volume

representation that we wish to explore in future work is that

of level sets or signed distance fields [12], which are more

information dense, but are less common in 2D. Our volume

size is 30 x 30 x 30, which was used in the original paper

and will be replicated for consistent results [1]. However,

as seen in figure 1, such volumes are fairly low resolution,

but still require the same memory footprint as an 165x165

1

image. As an implementation detail, the datasets were con-

verted and stored as shuffled HDF5 files. The dataset con-

tains 12,311 files, with a roughly 70%/30% training and test

split already provided. A smaller subset of the training set

was used for validation, but all the results reported here are

on the standard test set provided.

2. Related Work

The original ShapeNets paper, which introduced the

ModelNet40 dataset [22], implemented a 3D volumetric

convolution approach to classify the dataset. They report

77% top one accuracy, which suggests that the dataset is

fairly easy for convolutional neural networks to fit, as top

one accuracy performance on ImageNet is still below 30%

[5]. Of interest, they report pre-training the data with a

deep-belief-net architecture and contrastive divergence [6].

They also report that using trained neural networks signifi-

cantly reports the hand-designed features used in the previ-

ous literature, namely Light Field descriptors and Spherical

Harmonic descriptors [2].

The other published work using 3D convolutions is

VoxNet [13], which uses a more traditional CNN architec-

ture, with only gradient-based training methods. This mir-

rors those used in seminal works in digit [10] and image

classification [9]. Our implemented 3D CNN work draws

on a similar architecture, design, and training procedure.

Their work was sufficient to bring state-of-the-art to 83.0%

top one accuracy.

However, there has been another line of work on this

dataset, that focusing on using two dimensional convolu-

tional networks. This circumvents the intense memory re-

quirements of 3D CNNs, where data is typically in R5

(width, length, height, filter number, minibatch size). The

first work, DeepPano [17], used a cylindrical projection of

the mesh, and only fed the network a single view. This cir-

cumvented the need to select a viewpoint.The results, ob-

taining a 77.6% accuracy, were an improvement on the orig-

inally published ShapeNet paper.

Most recently, at ICCV 2015, Multiview CNNs were

published, which used a set of sampled projections of the

mesh. Their results only used 2D convolutions, were pre-

trained using ImageNet based classifiers, and were capable

of accepting multiple viewpoints. Their best performance

with a single viewpoint, of 85.1%, was a significant im-

provement on both the 3D CNNs and single view 2D CNNs.

As an even more impressive result, their performance with

80 views was 90.1%.

Based on this impressive performance, there may be evi-

dence to believe that 2D projections of 3D shapes, classified

with 2D CNNs, may perform better than using straightfor-

ward 3D CNNs. While the authors have some thoughts on

this matter, perhaps connecting the locality of CNN mod-

els with how projections create a small-world network [21]

across the R2 surface of a shape, this theory is neither tested

nor elaborated upon in this project.

However, it seems that a natural question to ask is, can

we come up with a way to learn a robust 3D to 2D projec-

tion? That is the motivating example behind most of the

methods implemented below, which seem to implement an

embedding network to transform 30 x 30 x 30 volumes di-

rectly into an image sized dimension for shape classifica-

tion. The goal is that this non-linear transformation will

arise from gradient learning methods.

A table summarized the performance of all previously

published methods and all methods implemented herein is

available as Table 1 on page 7.

3. Methods

In general, this work uses convolutional neural networks,

with pooling, convolution, and fully connected layers [10].

For this work there are two general classes of model im-

plemented, 3D CNNs such as those implemented in [13],

and 2D CNNs such as those implemented in [18], with the

caveat that a 3D to 2D embedded is learned rather than de-

veloped using a heuristic. An appropriate section is avail-

able to describe each class of methods, but they both have

several things in common. Namely, all models are learned

using a ReLU [14] nonlinearlity, convolutional layers in-

clude L2 regularization, and the model is a loss function is

a softmax training loss, which implements a cross-entropy

loss. Formally,

Loss =
1

N

∑

i

Li + λR(W)

Li = − log(
efyi∑
j e

fi
)

R(W) =
∑

k

∑

l

W 2

k,l

This should provide a more unique solution across the

space of possible weights, while also preferring a high prob-

ability value for the correct answer and a low probability

for all incorrect answers. Additionally, all models were ini-

tialized with mostly Xavier [4] initialization, and slightly

positive biases, unless otherwise noted. Models were all

trained directly with gradient-based learning, using back-

propagation and mini-batch gradient descent. Batches were

typically sized to fit in memory and gradient were accumu-

lated until batches were at least size 32. Learning rates (α)

were set to 0.001, and dropped by a power of ten every 2

epochs. Typically convergence is quick with 5-8 epochs re-

quired. The update rule was typically SGD with momentum

(γ set to 0.9), as follows, although some alternatives were

mentioned below.

v = γv + α∇Loss

2

40 classes

Fully Connected. 1200 Dimensions

Fully Connected. 2048 Dimensions

30

30

30

3x3, Stride 2 Pooling

48 filters, 3x3

Stride 1

160 filters, 5x5

Stride 2

512 filters, 4x4,

Stride 1

Figure 2. A view of the architecture used for the 3D CNN. This

shows the most complete and best performing architecture, al-

though others were tried, with larger convolutional filters, smaller

fully connected layers, and without pooling. Some selected results

are reported in Table 1. Additionally, dropout of 50% probability

was used before both fully connected layers.

W = W − v

In general, most of this work will be done using existing

CNN (convolutional neural network) packages. I’ve used

Torch [3] for my 3D CNN networks, and Caffe [7] for my

fine-tuned embedded networks. This comes from Caffe’s

convenience for tweaking layerwise learning rates and fine-

tuning from the Model Zoo. On the other hand, Torch has

better support for volumeric operations (namely, Torch has

VolumetricPooling while Caffe did not).

3.1. 3D Convolutional Neural Network

As seen in figure 2, a fairly straightforward CNN ar-

chitecture, with three convolutional layers and two fully-

connected layers was used to train a network. While

two convolutional layer models have been published before

[13], we decided to follow the recent trend of going deeper

[19] and build a three convolutional layer model; we also

used a traditional two layer fully connected network on the

top [10] After some experimentation with different solvers

(SGD, Adam [8], RMSProp[20]), we were able to get very

good performance, exceeding the previously published re-

sults for 3D CNNs. Using computing resources from the

Graphics Lab at Stanford, it takes about hour to train a

model to convergence on a single Tesla K40. These mod-

els were not heavily tuned or optimized, as their goal was

primarily to serve a baseline for the 2D embedding mod-

els below. The tuning of hyperparameters received help and

Figure 3. An example of our Upconv2 network being trained

directly from VGG-16 weights. The plot shows test accuracy and

loss, but this was simply because the graph was generated from

model snapshots. Actual results during design were only on the

validation set

consultation provided by Charles Qi and Hao Su from Pro-

fessor Guibas’ Geometric Computation group. Some inter-

esting results were that Adam converged very quickly to a

good result in a single epoch, but saturated in performance

compared to vanilla SGD, which took longer to converge

but did so to a better result. Additionally, dropout provided

an improvement of a few percentage points, and was ap-

plied at the fully connected layers only. Additionally, a

small amount of max pooling was beneficial after the bot-

tom convolution layer. The best model generated obtained

86.7% top one accuracy on the ModelNet40 dataset.

3.2. Learning a 3D to 2D embedding

Since the current best performer on ModelNet40 uses

pre-trained CNNs on multi-view renders of ModelNet, it

seems natural to propose that we use a gradient-trainable

transformation to directly feed ModelNet data to a pre-

trained image network, with no intermediate steps in be-

tween. There are multiple advantages of those approach.

First, the memory hit of using volumetric convolution

(which is typically N5 with minibatches, width, height,

length, and filter bank size) is avoided. Second, this al-

lows us to learn a transformation that may be better than the

heuristic transformations used in existing 2D-based shape

classifiers. Third, we can exploit ImageNet’s pre-training

as a regularizer, or prior, so that the trained embedding

layer will create images that follow natural image statistics

and don’t overfit our small dataset as quickly. Additionally,

systems which deploy both ShapeNet and ImageNet classi-

fiers can reuse weights and a computational routine between

them, allowing for an increased value and use of accelerat-

ing existing ImageNet classifiers.

The basic idea is straightforward, learn an approach to

take 30 x 30 x 30 volumetric data and find a way to output

224 x 224 x 3 image data. This embedding network is then

3

Fully Connected. 1200 Dimensions

Image-based classifier

30

30

30

227

227

1

227

227

3

Duplicate 3 times

224

224

3

30

30

30

Image-based classifier

30

30

16

30

30

48

30

30

16

30

30

16

30

30

16

30

30

16

30

30

16

240

240

3

30

30

3

16 30 x 1 x 1

16 1 x 30 x 1

16 1 x 1 x 30

Convolutions

3x3

Convolutions

Stride 1

Concatenate

3x3

Convolutions

Stride 1

7x7

Up-Convolutions

Stride 7

1x1

Convolutions

Stride 1, Pad 7

Figure 4. A view of the various architectures for 3D to 2D Embed-

ding networks. On the left is a basic fully connected embedding

with just a single matrix multiply. To reduce the parameter space,

this network is only done on a single channel and then duplicated

thrice for a three channel input image. The number of parameters

for such a network is easily 80 million, even for the single channel

version. To the right is an upsampling-based architecture, which

has far fewer parameters and generates more natural looking im-

ages; this is our Upconv1 architecture

Figure 5. Two example images generated by using a fully con-

nected network. The images look like complete noise, but still

achieve 75% top one accuracy in classification performance by

using CaffeNet with fine-tuned fc7 features [7]. The images are

normalized for 0 to 1 for display.

used to generate images which can be fed into a normal

ImageNet network. The network can then either be trained

from scratch, fine-tuned entirely, or fine-tuned for just the

top layer features. There are multiple possible architectures

for such an embedding and three at explored in detail here.

The two basic differences are summarized in figure 4. All

these models converge fairly smoothly and quickly and an

example of their performance is shown in figure 3. The

models were all trained on Amazon’s AWS EC2 instances

with Nvidia K520 GPUs.

3.2.1 Learning a full-connected embedding

The primary challenge of connecting an ImageNet network

to ModelNet is that the dimensions of the data are very dif-

ferent, and the naive solution is the use of a fully-connected

layer. As seen in figure 4, it’s fairly staightforward to use a

traditional, single layer fully connected layer (with a nonlin-

earility) to perform embedding. However, this creates about

80 million parameters, even by doing this over greyscale

images and duplicating the image across all channels. Our

initial experiments fine-tuned a pre-trained CaffeNet [7],

with a fully-connected layer hooking up the ModelNet in-

put to an ImageNet sized image. The challenge here is that

the representation is very low dimensional (1024), the num-

ber of parameters is very large, and the images look like

noise. We were able to tune these networks to begin train-

ing and converge, but their performance was significantly

worse than that of 3D CNNs.

To further reduce the number of parameters, we moved

to fine-tuning a Network-in-Network [11] architecture,

which has no fully-connected layers at the top, and instead

uses global average pooling and 1x1 convolutions to reduce

down to a classifier. We were also able to modify and train

this network to converge, although it took longer and per-

formed worse than the CaffeNet model. These fine-tuned

networks were trained on a CPU, specifically, a four core

desktop computer in Caffe (on Windows!) and took roughly

3-4 hours to converge. GoogleNet was also fine-tuned, and

also performed poorly.

To enhance the performance of the FC layer, we locked

the CaffeNet weights, and only fine-tuned the FC7 features

and the embedding network, along with trying 3 1x1 con-

volutions on the volume (one down each cardinal axis of

the volume, equivalent to 1x1x30, 1x30x1,30x1x1 convo-

lutions), to generate a 30x30x3 volume, which was then

reduced to size 30x30x1 and learned fully connected with

the single channel image size. While this slightly reduced

the dimensionality of the vector (900 dimensions), the more

structured learning allowed for a large increase in perfor-

mance (up to 75%). An example of these embeddings can

be seen in 5.

3.2.2 Learning a convolutional embedding

In order to reduce the burden of a fully-connected layer, we

began to explore a more convolutional architecture to creat-

ing an embedding between the 3D ModelNet and 2D Ima-

geNet data. The basic building block was a deconvolution,

or an upconvolution layer as we prefer to call it, where a sin-

gle input pixel is mapped to multiple output pixels. These

were recently introduced in the scope of full-frame segmen-

tation [23], and are being deployed here to avoid the high

dimensional fully connected layer.

One challenge to moving to these upconvolution layers

4

Figure 6. Upconv1 results. These examples are all predicted cor-

rectly and are of classes (left-to-right) of ’cup’, ’bowl’, ’desk’.

There are visible holes from using non-overlapping convolutions

for our upsampling, and these are fixed by our upconv2 architec-

ture. The images are normalized for 0 to 1 for display.

Figure 7. Upconv2 examples. These examples are all predicted

correctly and are of classes (left-to-right) of ’cup’, ’bowl’, ’desk’.

The images are normalized for 0 to 1 for display.

is that the dimensions of our data is even, which requires an

even sized output image layer if we want symmetric edge

performance in between. To achieve this, we only imple-

ment these upconvolution models on 224 sized ImageNet

networks, such as ResNet[5] and VGG [16], but not Caf-

feNet, which is sized 227x227.

Our basic design idea (as seen in figure 4) was to con-

tinue with the 1x1 convolution design we used in the fully

connected case, where 1x1x30, 1x30x1 and 30x1x1 con-

volutions are used down each cardinal axis. They’re then

transformed with another convolution layer, concatenated,

and passed through upsampling layers. These then have to

be cropped with a 1x1 convolution to ImageNet size. The

upconvolution layer has to be carefully initialized with bi-

linear weights, as using Xavier initialization leads to a fail-

ure of the optimization to converge in our testing. An ex-

ample of these embeddings can be seen in 6.

Our initial results with the upconvolution layer in were

very successful, but we noticed some issues with holes in

the data due to our choice of non-overlapping convolution

kernels. We thus implemented 8 to alleviate these issues.

It is denoted as Upconv2 in our results, and some example

embeddings can be seen in 7.

3.2.3 Picking an ImageNet network

We tried our embedding results across many various Ima-

geNet architectures. In general, we found VGG-16 to per-

form best in our testing. ResNet and GoogleNet report bet-

224

224

3

30

30

30

Image-based classifier

30

30

16

30

30

48

30

30

16

30

30

16

30

30

16

30

30

16

30

30

16

240

240

16

16 30 x 1 x 1

16 1 x 30 x 1

16 1 x 1 x 30

Convolutions

3x3

Convolutions

Stride 1

Concatenate

3x3

Convolutions

Stride 1

13x13

Up-Convolutions

Stride 7, Pad 3

1x1

Convolutions

Stride 1, Pad 7

30

30

64

Figure 8. An overview of our improved upconvolution architec-

ture: Upconv2.

Figure 9. Confusion matrix for a 1x1 + Locked CaffeNet style

method (2D convolutions)

ter ImageNet performance but were difficult to train in our

testing.

4. Results

The summary table of results can be seen in table 1. The

previously published methods are at the top with citations

numbers. The 3D CNN networks, as described in figure 2,

built in Torch and trained from scratch (on a GPU) are listed

in the middle section. While results from three different

embedding architectures, as shown in figures 4 and 8 are

seen at the end.

5

Figure 10. Confusion matrix for a volumetric convolution method

(3D convolutions)

The 3D CNNs are stronger (86.7%) than the previously

published 3D CNN results on this dataset [13, 22] at 83.1%.

However, they don’t perform as well as the published work

on multiview 2D CNNs. The confusion matrix over the test

set is shown in figure 10. Most of the errors are sensible,

such as confusing wardrobes for dressers, or flowers pots

for plants.

The 2D CNNs, attempting to create a learned embed-

ding layer to meet and surpass the heuristic techniques pre-

sented in previous work, perform very well. Their gener-

ated images, shown in figures 6 and 7, are seemingly natu-

ral. Additionally, their performance (85.5%) is only a hair

behind the trained 3D CNN on the same data, and is bet-

ter than all previously published results with just a single

view. That is, DeepPano’s 77.6% or even MVCNN’s 85.1%

on a single image. This suggests that a machine-learned

transformation may be superior to an old standby of using

a rendering technique, even though the input resolution to

the transformation (30x30x30) is very low, compared to a

render of the original mesh, as seen in figure 1. This is

very impressive considering the ambiguity in the classes of

the dataset (wardrobe/dresser, table/tv-stand/xbox) and the

low resolution images generated by the model (see figure 6

7. There are many possible ways to mitigate this, including

the use of higher resolution voxel grids, or possibly learning

an embedding from another, more compact data representa-

tion. There is a confusion matrix for a 2D embedding model

shown in figure 9. It’s errors are very similar to those in the

3D CNN, confusing flower pots for plants and so forth. The

biggest difference is that the 2D CNN struggles separating

tables from desks, a suggestion that their learned embed-

ding may be very similar (a flat surface). However, even

this is an understandably difficult case of semantic labels.

There are many other interesting lessons learned. First,

certain models are difficult to learn an embedding for,

such as ResNets and GoogleNet. Initializing the upcon-

volution layers in the embedding with anything other than

bilinear interpolation is disastrous. Fine-tuning from an

ImageNet model is significantly superior to training from

scratch. Another interesting results is these embeddings

generate natural enough images that even models without

fully-connected classifier layers, such as the network-in-

network or GoogleNet models, are able to train very high

performing classifiers on the dataset.

All of these results are clearly demonstrated in the table

of results on page 7.

5. Conclusions and Future Work

The results in this project show that CNNs have the abil-

ity to learn an embedding from 3D to 2D which is superior

to the single view render and classification results published

in the current state-of-the-art papers [17] [18]. This shows

that gradient-trainable transformations across various data

formats are very powerful if the goal is only classification

loss.

There are many interesting questions left. Such as, do

signed distance fields perform better than occupancy vox-

els? What is the nature of 2D convolutions being more

powerful than 3D convolutions? Is it in the model ensemble

or is there something inherent in the data? We would like

to also explore improved typologies for building an embed-

ding network.

The last line of further work would be to improve the

applicability of these models. For example, if we had addi-

tional time, we’d like to demonstrate that they can be used

on live depth data (from a single viewpoint), using a data

source such as a Microsoft Kinect. Additionally, we’d like

to perhaps learning a 3D embedding from 2D data. This is

the direct inverse of the data transformations explored here

and would allow us to perform shape classification from im-

ages, using only annotated sets of CAD models.

6

Architecture Conv Embedding Pretrain Regularization Top 1 Accuracy Iteration

MVCNN 80 Images [18] 2D ImageNet 90.1%

MVCNN 1 Image [18] 2D ImageNet 85.1%

VoxNet [13] 3D None 83.0%

DeepPano [17] 2D 77.6%

3DShapeNets [22] 3D None 77.0%

3D CNN 3D None None 83.8% 10000

3D CNN 3D None Dropout 84.6% 10000

3D CNN + Pooling 3D None Dropout 86.7% 10000

Embedding + CaffeNet [7] 2D FC ImageNet Dropout 66.5% 3000

Embedding + NetworkInNetwork [11] 2D FC ImageNet Dropout 63.0% 5000

Embedding + GoogleNet [19] 2D FC ImageNet 57.0% 5000

Embedding + 1x1 Conv + CaffeNet 2D FC ImageNet Dropout 67.3% 3750

Embedding + 1x1 Conv + CaffeNet (Locked) 2D FC ImageNet Dropout 75.6% 4750

Embedding + 1x1 Conv + CaffeNet (from scratch) 2D FC ImageNet Dropout 63.1% 10000

Embedding + ResNet-50 [5] 2D Upconv1 ImageNet Dropout 50.3% 10000

Embedding + GoogleNet [19] 2D Upconv1 ImageNet Dropout 31.0% 10000

Embedding + VGG[16] + Xavier[4] for Upconv 2D Upconv1 ImageNet Dropout 0.03% 10000

Embedding + VGG-16 [16] 2D Upconv1 ImageNet Dropout 78.0% 10000

Embedding + VGG-16 [16] + ft 2D Upconv1 ImageNet Dropout 83.5% 10000

Embedding + VGG-16 [16] 2D Upconv2 ImageNet Dropout 85.5% 10000

Table 1. Table of results. The results in bold are the best performers when given a single input model. The presented methods in this project

are the best in both 2D and 3D CNNs when evaluating just a single image.

References

[1] A. X. Chang, T. A. Funkhouser, L. J. Guibas, P. Hanrahan,

Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su,

J. Xiao, L. Yi, and F. Yu. Shapenet: An information-rich 3d

model repository. CoRR, abs/1512.03012, 2015.

[2] D.-Y. Chen, X.-P. Tian, Y.-T. Shen, and M. Ouhyoung. On

visual similarity based 3d model retrieval. In Computer

graphics forum, volume 22, pages 223–232. Wiley Online

Library, 2003.

[3] R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A

matlab-like environment for machine learning. In BigLearn,

NIPS Workshop, number EPFL-CONF-192376, 2011.

[4] X. Glorot and Y. Bengio. Understanding the difficulty of

training deep feedforward neural networks. In International

conference on artificial intelligence and statistics, pages

249–256, 2010.

[5] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. CoRR, abs/1512.03385, 2015.

[6] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learn-

ing algorithm for deep belief nets. Neural computation,

18(7):1527–1554, 2006.

[7] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional

architecture for fast feature embedding. In Proceedings of

the ACM International Conference on Multimedia, pages

675–678. ACM, 2014.

[8] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. CoRR, abs/1412.6980, 2014.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in neural information processing systems, pages

1097–1105, 2012.

[10] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 86(11):2278–2324, 1998.

[11] M. Lin, Q. Chen, and S. Yan. Network in network. arXiv

preprint arXiv:1312.4400, 2013.

[12] B. C. Lucas, M. Kazhdan, and R. H. Taylor. Springls: a

deformable model representation to provide interoperability

between meshes and level sets. In Medical Image Computing

and Computer-Assisted Intervention–MICCAI 2011, pages

442–450. Springer, 2011.

[13] D. Maturana and S. Scherer. Voxnet: A 3d convolutional

neural network for real-time object recognition. In IEEE/RSJ

International Conference on Intelligent Robots and Systems,

September 2015.

[14] V. Nair and G. E. Hinton. Rectified linear units improve

restricted boltzmann machines. In Proceedings of the 27th

International Conference on Machine Learning (ICML-10),

pages 807–814, 2010.

[15] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. S. Bernstein,

A. C. Berg, and F. Li. Imagenet large scale visual recognition

challenge. CoRR, abs/1409.0575, 2014.

[16] K. Simonyan and A. Zisserman. Very deep convolu-

tional networks for large-scale image recognition. CoRR,

abs/1409.1556, 2014.

7

[17] S. Song and J. Xiao. Deep sliding shapes for amodal

3d object detection in rgb-d images. arXiv preprint

arXiv:1511.02300, 2015.

[18] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller. Multi-

view convolutional neural networks for 3d shape recogni-

tion. In Proceedings of the IEEE International Conference

on Computer Vision, pages 945–953, 2015.

[19] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. CoRR, abs/1409.4842,

2014.

[20] T. Tieleman and G. Hinton. Lecture 6.5—RmsProp: Di-

vide the gradient by a running average of its recent magni-

tude. COURSERA: Neural Networks for Machine Learning,

2012.

[21] D. J. Watts and S. H. Strogatz. Collective dynamics of small-

worldnetworks. nature, 393(6684):440–442, 1998.

[22] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and

J. Xiao. 3d shapenets: A deep representation for volumetric

shapes. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 1912–1920, 2015.

[23] L. Xu, J. S. Ren, C. Liu, and J. Jia. Deep convolutional

neural network for image deconvolution. In Z. Ghahramani,

M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Wein-

berger, editors, Advances in Neural Information Process-

ing Systems 27, pages 1790–1798. Curran Associates, Inc.,

2014.

8

